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Abstract

Response of a simple Jeffcott rotor to random excitation is considered with both external and internal
damping taken into account. Mean square responses are predicted by the method of moments for the cases
of transverse and angular (tilting) oscillations. Contrary to unbalance-induced response the random
vibrations are shown to depend on the internal or ‘‘rotating’’ damping; in particular, their level increases
with approaching threshold speed for dynamic instability. Procedure for estimating this threshold from on-
line measurements of the shaft’s random vibrations at a constant rotation speed is outlined based on the
calculating coherence function of lateral displacements in two perpendicular directions for the case of
transverse vibrations and that of tilting angles about two perpendicular axes for the case of tilting
oscillations. Dependence of the mean square responses on the rotation speed can also be used for the
stability margin evaluation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating shafts in certain applications, such as high-power turbines or fans, may experience
random excitation of bending vibrations during their operation (say, due to circumferential non-
uniformity of a turbulent pressure field in a working fluid flow within a turbine). Whilst the
resulting response of the shaft may usually be small compared with its response to unbalance, the
measurable random vibration signal (at the shaft’s natural frequency) can be detected sometimes
if high-precision velocity sensors are used [1]. Thus, analysis of the response may be of interest as
long as the available response signal may be used with advantage for on-line diagnostics, or state
monitoring of the rotating shaft. Certain potential procedures for such a diagnostics of the shaft’s
stability margin are considered in the following as based on peak value of a coherence function
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between responses in two perpendicular directions and on the ‘‘universal’’ dependence of the mean
square responses on the ratio of rotation speed to its value at the instability threshold.

2. Lateral linear oscillations

Consider a simple Jeffcott rotor with a weightless shaft of stiffness K rotating with angular
velocity n: The horizontal shaft carries a disk of mass m at its midspan and possesses both external
or ‘‘non-rotating’’ damping and internal or ‘‘rotating’’ damping with corresponding damping
factors cn and cr; respectively. Let X ðtÞ and Y ðtÞ be lateral horizontal and vertical displacements,
respectively, of the disk’s centre in the inertial frame with origin at the undeformed shaft’s axis.
Then, neglecting gravity force for sufficiently high rotation speeds and adding lateral random
excitations one can write equations of lateral motion as [2]

.X þ 2k ’X þ O2X þ 2bnY ¼ fX ðtÞ; .Y þ 2k ’Y þ O2Y � 2bnX ¼ fY ðtÞ; ð1Þ

where O2 ¼ K=m; k ¼ aþ b; a ¼ cn=2m; b ¼ cr=2m: The random forces on the RHSs of Eqs. (1)
are assumed to be stationary zero-mean uncorrelated Gaussian white noises with the same
intensity factor s2: As shown in Appendix A, this would be the case if the time-variant part of the
pressure field in a flow of working fluid within the machine is delta-correlated both in time and in
a circumferential direction.
An analysis of system (1) will be made under the well-known [2] condition for dynamic stability

of its LHS non� where n� ¼ kO=b ¼ Oð1þ cn=crÞ is the value of rotation speed at the instability
threshold. One of the goals of the analysis is to find a way for evaluating this threshold by
appropriate processing of the signals X ðtÞ; Y ðtÞ as measured during steady operation at a rotation
speed that satisfies the above stability condition.
Mean values, variances and co-variances of the responses as governed by Eqs. (1) can be found

by the method of moments [3]. First, direct application of probabilistic averaging, which will be
denoted by angular brackets, yields a homogeneous pair of equations for the mean values of X ðtÞ
and Y ðtÞ; this set of equations has zero steady state solution. To find the second order moments of
the response the 4� 1 vector Z of state variables Z1 ¼ X ; Z2 ¼ Y ; Z3 ¼ ’X; Z4 ¼ ’Y is then
introduced and Eqs. (1) are rewritten in a matrix form as

’Z ¼ AZþ BfðtÞ; A ¼

0 0 1 0

0 0 0 1

�O2 �2bn �2k 0

2bn �O2 0 �2k

2
66664

3
77775; B ¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð2Þ

where fðtÞ is a 4� 1 vector of white noises with

/ fiðtÞfjðt þ tÞS ¼ WijdðtÞ for i; j ¼ 1; 2; 3; 4 and W33 ¼ W44 ¼ s2

all other Wij being zero: ð3Þ

Here dðtÞ is the Dirac delta-function.
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The 4� 4 matrix of variances D with elements Dij ¼ /ZiZjS; i; j ¼ 1; 2; 3; 4 satisfy the
deterministic matrix ODE [3]

’D ¼ ADþDAT þ BWBT; ð4Þ

where superscript T denotes transpose of a vector or matrix.
For the present case of matrices A;B;W as defined by expressions (2) and (3), the ODE (4) has

the following constant steady-state analytical solution for elements of the matrix D (as obtained
by equating the RHS to zero):

D11 ¼D22 ¼ /X 2S ¼ /Y 2S ¼
s2

4ðaþ bÞO2½1� ðn=n�Þ
2�
;

D12 ¼ 0; D33 ¼ D44 ¼ O2D11; D13 ¼ D24 ¼ D34 ¼ 0; D14 ¼ �D23 ¼ ðbn=kÞD11: ð5Þ

The solution shows that the shaft’s responses in two fixed perpendicular directions are
uncorrelated and have identical mean square values. The mean square response is seen to
increase with increasing rotation speed, particularly with approaching instability threshold where
it becomes unbounded. In this respect the response to random excitation is different from that to
unbalance, the latter being known to be completely insensitive to the influence of ‘‘rotating’’
damping [2]. On the contrary, as can be seen from solution (5) the stability threshold n� can be
estimated from the random vibrations—namely, by calculating the ratio of mean square responses
measured at two (or more) different rotation speeds (after the band-pass filter is applied to detect
the random component from the overall measured signal). Moreover, as will be shown in the
following, using spectral and cross-spectral analysis of the responses X ðtÞ and Y ðtÞ; one can obtain
the desired estimate from measurements at a single rotation speed; that would be truly on-line
diagnostics.
Power spectral densities (PSDs) of the responses X ðtÞ; Y ðtÞ can be derived by using the

following definition of cross-spectral density of any pair of stationary random processes ZiðtÞ;
ZjðtÞ [4]:

FZiZjðoÞ ¼ lim
T-N

ð1=TÞ/ *Ziðo;TÞ *Z�
j ðo;TÞS; *Zðo;TÞ ¼

Z T

�T

ZðtÞ expðiotÞ dt; i ¼
ffiffiffiffiffiffiffi
�1

p
; ð6Þ

where star superscript denotes complex conjugate quantity; this definition covers auto-spectral
densities as well if i ¼ j: Applying to Eqs. (1) the Fourier transform with finite limits þT and �T

as denoted by tilda in Eqs. (6), yields two algebraic equations in the frequency domain:

*Xð�o2 þ 2ikoþ O2Þ þ *Yð2bnÞ ¼ *fX ; *Xð�2bnÞ þ *Yð�o2 þ 2ikoþ O2Þ ¼ *fY : ð7Þ

The auto- and cross-spectral densities of X ðtÞ and Y ðtÞ can now be obtained by solving Eqs. (7)
for *X and *Y and applying the basic definition (6). The result is

FXX ðoÞ ¼FYY ðoÞ ¼ ðs2=2pDD�Þ ½ðo2 � O2Þ2 þ 4ðk2o2 þ b2n2Þ�;

FXY ðoÞ ¼ ðs2=2pDD�Þ8ikobn; D ¼ ð�o2 þ 2ikoþ O2Þ2 þ ð2bnÞ2 ð8Þ

(the factor s2=2p appears here as the constant PSD of each of the white noises f ðtÞ). This
solution can be used to obtain the coherence function [4] of the responses in two perpendicular

ARTICLE IN PRESS

M.F. Dimentberg et al. / Journal of Sound and Vibration 279 (2005) 275–284 277



directions as

g2XY ðoÞ ¼
jF2

XY ðoÞj
FXX ðoÞFYY ðoÞ

¼
ð8kobnÞ2

½ðo2 � O2Þ2 þ 4ðk2o2 þ b2n2Þ�2
: ð9Þ

This function can be seen to have a peak in the immediate vicinity of the rotor’s natural frequency
O; which is known to be also the frequency of forward whirl at the stability boundary, that is of
the neutrally stable shaft [2]; shift of the peak is found to be of the order of total damping ratio
k=O; and it diminishes also with approaching stability threshold. By introducing the instability
threshold rotation speed n� ¼ kO=b ¼ Oð1þ cn=crÞ the approximate peak value of the coherence
function can be represented, therefore, as

g2XY ðOÞ ¼
2n=n�

1þ ðn=n�Þ
2

" #2
: ð10Þ

Relation (10) provides the desired approximate on-line estimate of the instability threshold n� of
the rotor from the peak value of the coherence function of the two response signals measured
during stable steady state operation of the rotor at a fixed rotation speed n:

3. Angular oscillations

As a second example consider another simple TDOF rotor, once again with the disk at its
midspan but with bearings that allow in this case only angular oscillations, or tilting around the
transverse axes (Fig. 1). Let fX ; fY be the corresponding rotation angles about axes X and Y ;
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respectively, or tilting angles; Ja is the moment of inertia of the (axisymmetric) rotor with respect
to these axes; Jp the rotor’s moment of inertia with respect to the rotation axis; n the rotation
speed (once again), and Kf the angular stiffness of the shaft. Then, instead of Eqs. (1) the
equations of angular motion may be written as

.fX þ 2k ’fx þ O2fX þ rn ’fY þ 2bnfY ¼ gX ðtÞ;

.fY þ 2k ’fY þ O2fY � rn ’fX � 2bnfX ¼ gY ðtÞ; ð11Þ

where O2 ¼ Kf=Ja; r ¼ Jp=Ja: The damping parameters k and b are defined here similar to the
case of lateral linear oscillations: k ¼ af þ bf; af ¼ cfn=Ja; bf ¼ cfr=Ja; where the c’s are
coefficients of non-rotating and rotating damping in angular rather than translational oscillations
as indicated by the additional subscript f: Eqs. (11) and (1) differ in their structure only due to the
additional terms with factor r in the former which describe the gyroscopic effect in angular
oscillations. The random moments in the RHSs of Eqs. (11) are likewise assumed to be stationary
zero-mean uncorrelated Gaussian white noises with the same intensity factor s2f:
The condition for dynamic stability of the rotor will be determined first, as governed by LHSs

of Eqs. (11). Introducing the complex variable

f ¼ fX þ ifY ; ð12Þ

one can obtain from Eqs. (11) the homogeneous complex differential equation of motion

.fþ 2k ’fþ O2f� irn ’f� 2ibnf ¼ 0: ð13Þ

Assuming a solution in the form

fðtÞ ¼ f0 expðiotÞ ð14Þ

and requiring o to be real leads to the complex equation for the neutral stability condition in
terms of the rotation speed n:

f0½�o2 þ 2ikoþ O2 þ rno� 2ibn� ¼ 0: ð15Þ

Equating to zero separately the real and imaginary parts of the quantity in brackets yields two
relations between frequency of whirl o and rotation speed n:

o2 � rno� O2 ¼ 0; bn ¼ ko: ð16Þ

The solution to this pair of equations corresponds to the stability boundary and therefore will be
denoted by star subscripts. Thus, eliminating o from relations (16) yields the instability threshold
speed n ¼ n� and the corresponding whirl speed o ¼ o� is obtained then as

n� ¼
ðk=bÞOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rk=b

p ; o� ¼ bn�=k ¼
Offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rk=b
p : ð17Þ

This stability threshold speed can be reached only if rk=bo1; or rð1þ a=bÞo1: For the case
rk=b51; expressions (17) reduce to those which hold for translational vibrations considered in
Section 2.
The mean values, variances, and covariances of the responses are determined once again by the

method of moments. Let Z be now the 4� 1 vector of the state variables:

Z1 ¼ fX ; Z2 ¼ fY ; Z3 ¼ ’fX ; Z4 ¼ ’fY : ð18Þ

ARTICLE IN PRESS

M.F. Dimentberg et al. / Journal of Sound and Vibration 279 (2005) 275–284 279



Eqs. (11) can then be rewritten in matrix form as

’Z ¼ AZþ BgðtÞ; A ¼

0 0 1 0

0 0 0 1

�O2 �2bn �2k �rn

�2bn �O2 rn �2k

2
66664

3
77775; B ¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; ð19Þ

where gðtÞ is a 4� 1 vector of white noises with

/giðtÞgjðt þ tÞS ¼ WijdðtÞ for i; j ¼ 1; 2; 3; 4 and W33 ¼ W44 ¼ s2f;

all other Wij being zero: ð20Þ

In this case the matrix ODE (4) for the corresponding 4� 4 matrix D of covariances has the
steady state solution

D11 ¼ D22 ¼ /f2
XS ¼ /f2

YS ¼
s2f

4ðaþ bÞO2½1� ðn=n�Þ
2�
;

D12 ¼ 0; D33 ¼ D44 ¼ ðO2 þ rbn2=kÞD11; D13 ¼ D24 ¼ D34 ¼ 0;

D14 ¼ �D23 ¼ ðbn=kÞD11; ð21Þ

where n� is defined by expression (17). This result is somewhat similar to one obtained in Section 2
and can be interpreted similarly. In particular, the instability threshold speed n� can be estimated
once again from random vibration data, by calculating the ratio of mean square responses as
measured at two (or more) different rotation speeds.
Finally, consider the possibility of using spectral and cross-spectral analysis to estimate the

stability threshold speed. The coherence function of two tilting angles may be obtained, similar to
Section 2, as

g2fXfY ðoÞ ¼
2on½4kbþ rðo2 � O2Þ�

ðo2 � O2Þ2 þ 4ðk2o2 þ b2n2Þ þ r2n2o2

� 2

: ð22Þ

In case r ¼ 0; this expression is reduced to expression (9) as obtained for the case of translational
vibrations of the shaft.
Value of the coherence function (22) at the frequency o ¼ o� can be expressed in terms of the

ratio n=n� by the same relation (10) as had been derived for translational vibrations but with the
relevant values of n� defined by Eq. (17):

g2fXfY ðo�Þ ¼
2n=n�

1þ ðn=n�Þ
2

" #2
: ð23Þ

Besides different definitions of the instability threshold speed n� in relations (10) and (23),
different arguments of the coherence functions are seen in these relations. These arguments are
angular frequencies of the shaft’s whirl at the corresponding stability boundaries, that is O and o�
for translational and tilting oscillations, respectively. It can also be shown that for the lightly
damped shaft the quantity in the LHS of expression (23) is once again (approximately) the peak
value of the coherence function—of the two tilting angles in this case.
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4. Conclusions

Two cases of random vibrations have been considered for an axisymmetric perfectly balanced
TDOF rotating shaft with a disk at its midspan, namely those of translational and of angular or
tilting oscillations. A mean square response analysis has been performed for each type of
oscillations by the method of moments, as well as an analysis of the response PSDs that lead to
analytical expressions for the coherence function of displacements along two mutually
perpendicular directions (translational in the first case and angular in the second one).
The mean square response analyses for both cases resulted in analytical expressions that

describe a ‘‘universal’’ dependence on rotation speed as Dii ¼ Dii;0=½1� ðn=n�Þ
2�: Here, i ¼ 1; 2

and an additional subscript ‘‘zero’’ for the mean square responses D’s that correspond to the shaft
at a zero rotation speed, whereas n� is the relevant rotation speed at the instability threshold. The
coherence functions (9) and (22) for the cases of translational and angular (tilting) vibrations,
respectively, are also seen to possess certain similarities in spite of a ‘‘natural gyroscopic coupling’’
which is present in the latter case but not in the former one. Namely, peaks of coherence functions
of translational displacements in two perpendicular directions and of tilting angles about two
perpendicular axes are attained at frequencies of the shaft’s whirl at the corresponding stability
boundaries—namely at o ¼ O for the former of the two functions and at o ¼ o� for the latter
one. Furthermore, peak values of these two coherence functions exhibit similar dependence on the
ratio n=n� according to relations (10) and (23). In these relations n is the rotation speed at which
measurements are made whereas n� is the relevant instability threshold speed defined by
expression (17) for the latter of the two relations and by its special version with r ¼ 0 for the
former one.
It may be speculated that strong coupling between vibrations in two mutually perpendicular

directions, as resulting in high peak values of the coherence function, may also be used as an
indicator of closeness to the instability threshold for rotating shafts for other sources of instability
than ‘‘rotating’’ internal damping—for example, for the cases of potential instability due to thin
fluid films in plain journal bearings, labyrinth seals, etc. Increasing the mean square level of the
random response component with increasing rotation speed seems also to be generally useful for
detecting an approach to the stability threshold for such cases.
Finally, some comments on potential applications to real rotating machinery seem appropriate.

The proposed algorithms for condition monitoring, as derived from analytical solutions for
random vibrations of two versions of the basic Jeffcott rotor model, may not be directly
applicable to complicated rotor systems that are described only approximately by these models.
Therefore, these algorithms may be in need of verification of their ‘‘robustness’’ with respect to
potential deviations from the basic model—such as small anisotropy in stiffness of the shaft and/
or its supports, additional degrees of freedom, etc.; some adjustment(s) of the algorithms may be
required. The verification may be implemented by a numerical solution of the equations for
moments and/or by direct numerical Monte Carlo simulation of the random vibration problem
for a given system. For example, a four-degrees-of-freedom shaft with a single disk that is offset
from the shaft’s midspan may experience both translational and tilting oscillations that would be
coupled. Whilst applicability of the coherence approach may still be expected in this case, the
ultimate verification would be necessary, which can be obtained by a numerical solution of the
equations for the response moments. Numerical studies may also be applied for cases where
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random excitations in two perpendicular directions are correlated—for example if concentrated
random force(s) of fixed direction is (are) applied to the shaft from the vibrating support(s). Thus,
the analytically derived methods may also be viewed as benchmarks that may prove to be helpful
for the numerical studies of more complicated models of random vibrations, including those
based on direct Monte Carlo simulations.
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Appendix A. Excitation model

Consider a solid circular disk exposed to an external stationary homogeneous random pressure
field along its boundary. Let the time-invariant part of the field be constant along circumference
whereas the time-variant part pðy; tÞ is delta-correlated both in time and in angular position. Thus

/pðy; tÞS ¼ 0; /pðy; tÞpðy0; t þ tÞS ¼ s20dðy� y0ÞdðtÞ: ðA:1Þ

Let fX ðtÞ and fY ðtÞ be horizontal and vertical forces, respectively, as applied to the disk, so that

fX ðtÞ ¼
Z 2p

0

pðy; tÞ cos y dy; fY ðtÞ ¼
Z 2p

0

pðy; tÞ sin y dy: ðA:2Þ

Then, using definitions (A.2) and properties (A.1) of the pressure field one can see that the first
order moments of both forces are zero, whereas for the second order moments we obtain

/fX ðtÞfX ðt þ tÞS ¼ s20dðtÞ
Z 2p

0

cos y dy
Z 2p

0

cos y0 � dðy� y0Þ dy0

¼ s20dðtÞ
Z 2p

0

cos2 y dy ¼ s2dðtÞ;

/fY ðtÞfY ðt þ tÞS ¼ s20dðtÞ
Z 2p

0

sin y dy
Z 2p

0

sin y0 � dðy� y0Þ dy0

¼ s20dðtÞ
Z 2p

0

sin2 y dy ¼ s2dðtÞ;

/fX ðtÞfY ðt þ tÞS ¼ s20dðtÞ
Z 2p

0

cos y dy
Z 2p

0

sin y0 � dðy� y0Þ dy0

¼ s20dðtÞ
Z 2p

0

sin 2y dy ¼ 0; ðA:3Þ

where s2 ¼ ps20: Thus we arrived at the excitation model used in Eqs. (1).
A similar model may be adopted for the case of angular oscillations of the disk, as governed by

Eqs. (11). Assume for simplicity that the width h of the fluid-filled annulus around the disk (say,
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height of turbine blades) is small compared with the disk’s radius R: Then the moments gX ðtÞ;
gY ðtÞ as produced by distributed axial forces would be defined by Eqs. (A.2) with each integral
multiplied by factor R þ h=2—and of course with f ’s replaced by g’s with the same subscripts.

Appendix B. Nomenclature

cn coefficient of ‘‘non-rotating’’ damping in translational motion, that is,
proportionality factor between velocity and corresponding damping force in
non-rotating frame

cfn coefficient of ‘‘non-rotating’’ damping in tilting motion, that is, proportion-
ality factor between angular velocity and moment of the corresponding
damping force in non-rotating frame

cr coefficient of ‘‘rotating’’ damping in translational motion, that is, propor-
tionality factor between velocity and corresponding damping force in rotating
frame

cfr coefficient of ‘‘rotating’’ damping in tilting motion, that is, proportionality
factor between angular velocity and moment of the corresponding damping
force in rotating frame

Dij; i; j ¼ 1; 2; 3; 4 variances and covariances of the state variables—that is, of translational
displacements and velocities in Section 2 and of angular displacements and
velocities in Section 3

fX ðtÞ; fY ðtÞ random forces applied to the rotor in directions X and Y ; respectively
gX ðtÞ; gY ðtÞ random moments about axes X and Y ; respectively, applied to the rotor
Ja moments of inertia of the (axisymmetric) rotor with respect to axes X and Y

Jp rotor’s moment of inertia with respect to its rotation axis
K rotor’s stiffness with respect to translational displacements
Kf rotor’s angular stiffness with respect to tilt
Wij intensities of white-noise excitations—forces in Section 2 (see relations (3))

and moments in Section 3 (see relations (20))
X ; Y horizontal and vertical axes, respectively, of a non-rotating Cartesian frame

with origin at the intersection point of disk with the undeformed shaft’s axis
Z vectors of state variables—translational displacements and velocities in

Section 2 and angular displacements and velocities in Section 3
a cn=2m
b cr=2m

af cfn=2Ja

bf cfr=2Ja

g2XY ðoÞ coherence function of translational displacements X ðtÞ; Y ðtÞ
g2fXfY ðoÞ coherence function between angular displacements fX ðtÞ; fY ðtÞ
fX ðtÞ; fY ðtÞ angular displacements about axes X ; Y ; respectively, or tilt angles
FZiZjðoÞ auto- and cross-spectral densities of arbitrary stationary processes ZiðtÞ; ZjðtÞ
k aþ b for translational oscillations—Eqs. (1) in Section 2
k af þ bf for tilting oscillations—Eqs. (11) in Section 3
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r Jp=Ja

n angular frequency or speed of shaft’s rotation
n� speed of shaft’s rotation at the instability threshold; defined by Eq. (17) for

tilting oscillations and by its special case for r ¼ 0 for translational
oscillations

s2; s2f intensities, respectively, of white-noise forces f ðtÞ (Section 2) and moments
gðtÞ (Section 3)

o frequency
o� frequency of the shaft’s forward whirl at the neutral stability boundary;

defined by Eq. (17) for tilting oscillations and by its special case for r ¼ 0 for
translational oscillations

O
ffiffiffiffiffiffiffiffiffiffi
K=m

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kf=Ja

p
in Sections 2 and 3, respectively—natural frequency of a

non-rotating shaft
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